Python科学计算程序库

NumPy库

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。

NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的N维数组对象 ndarray
  • 广播功能函数
  • 整合 C/C++/Fortran 代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

SciPy库

SciPy 是一个开源的 Python 算法库和数学工具包。

Scipy 是基于 Numpy 的科学计算库,用于数学、科学、工程领域的常用软件包,可以处理最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解器等。 。

SciPy 包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算。

NumPySciPy 的协同工作可以高效解决很多问题,在天文学、生物学、气象学和气候科学,以及材料科学等多个学科得到了广泛应用。

Matplotlib库

Matplotlib 可能是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。

IPython 以及 pylab 模式

IPython 是 Python 的一个增强版本。它在下列方面有所增强:命名输入输出、使用系统命令(shell commands)、排错(debug)能力。我们在命令行终端给 IPython 加上参数 -pylab (0.12 以后的版本是 --pylab)之后,就可以像 Matlab 或者 Mathematica 那样以交互的方式绘图。

pylab

pylab 是 matplotlib 面向对象绘图库的一个接口。它的语法和 Matlab 十分相近。也就是说,它主要的绘图命令和 Matlab 对应的命令有相似的参数。

Pandas 库

Pandas教程

  • Pandas 是 Python 语言的一个扩展程序库,用于数据分析。

  • Pandas 名字衍生自术语 "panel data"(面板数据)和 "Python data analysis"(Python 数据分析)。

  • Pandas 是一个开放源码、BSD 许可的库,提供高性能、易于使用的数据结构和数据分析工具。

  • Pandas 一个强大的分析结构化数据的工具集,基础是 Numpy(提供高性能的矩阵运算)。

Seaborn 库

Seaborn 教程

  • Seaborn 是一个基于 Matplotlib 的数据可视化库,专注于统计图形的绘制,旨在简化数据可视化的过程。

  • Seaborn 提供了一些简单的高级接口,可以轻松地绘制各种统计图形,包括散点图、折线图、柱状图、热图等,而且具有良好的美学效果。

例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd

# 创建一个示例数据框
data = {'A': [1, 2, 3, 4, 5], 'B': [5, 4, 3, 2, 1]}
df = pd.DataFrame(data)

# 计算 Pearson 相关系数
correlation_matrix = df.corr()
# 使用热图可视化 Pearson 相关系数
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.show()

这段代码将生成一个热图,用颜色表示相关系数的强度,其中正相关用温暖色调表示,负相关用冷色调表示。annot=True 参数在热图上显示具体的数值。

示例热图